Expression of the insect metalloproteinase inhibitor IMPI in the fat body of Galleria mellonella exposed to infection with Beauveria bassiana.
نویسندگان
چکیده
The inducible metalloproteinase inhibitor (IMPI) discovered in Galleria mellonella is currently the only specific inhibitor of metalloproteinases found in animals. Its role is to inhibit the activity of metalloproteinases secreted by pathogenic organisms as virulence factors to degrade immune-relevant polypeptides of the infected host. This is a good example of an evolutionary arms race between the insect hosts and their natural pathogens. In this report, we analyze the expression of a gene encoding an inducible metalloproteinase inhibitor (IMPI) in fat bodies of the greater wax moth larvae Galleria mellonella infected with an entomopathogenic fungus Beauveria bassiana. We have used a natural infection, i.e. covering larval integument with fungal aerospores, as well as injection of fungal blastospores directly into the larval hemocel. We compare the expression of IMPI with the expression of genes encoding proteins with fungicidal activity, gallerimycin and galiomycin, whose expression reflects the stimulation of Galleria mellonella defense mechanisms. Also, gene expression is analyzed in the light of survival of animals after spore injection.
منابع مشابه
Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides.
Pre-exposure of the larvae of Galleria mellonella to Candida albicans or Saccharomyces cerevisiae protects against a subsequent infection with 10(6) C. albicans cells. This protection can also be induced by exposing larvae to glucan or laminarin prior to the administration of the potentially lethal inoculum. Analysis of the genes coding for galiomicin, a defensin in G. mellonella, a cysteine-ri...
متن کاملImmunity of the greater wax moth Galleria mellonella.
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host-pathogen interaction and adaptation of organisms to conditions of l...
متن کاملCan Insects Develop Resistance to Insect Pathogenic Fungi?
Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25(th) generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus,...
متن کاملPhysical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans.
Larvae of the greater wax moth (Galleria mellonella) that had been subjected to physical stress by shaking in cupped hands for 2 min showed reduced susceptibility to infection by Candida albicans when infected 24 h after the stress event. Physically stressed larvae demonstrated an increase in haemocyte density and elevated mRNA levels of galiomicin and an inducible metalloproteinase inhibitor (...
متن کاملRecognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella: a new pathway mediating induction of humoral immune responses.
Proteolytic activity released within an organism by wounded tissues or invading pathogens can strongly impair the physiological homeostasis when it remains non-regulated. Thus, an efficient mechanism that enables recognition and inactivation of non-regulated proteolytic activity is essential to limit toxic effects. In larvae of the Greater wax moth Galleria mellonella we discovered that injecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2017